19 research outputs found

    Regional climate messages for South Asia

    Get PDF
    It was essential to understand the extent of climatic variability and the associated biophysical response to ascertain appropriate entry points for the RRP phase. To enhance our understanding of historical climate change and climate variability in the three ASSAR sub-regions, we investigated trends in temperature and precipitation in the broader landscape surrounding the sub-regions (hereafter ASSAR sub-region envelopes).International Development Research Centre (IDRC) - CanadaUK's Department for International Development (DFID) UKCollaborative Adaptation Research Initiative in Africa and Asia (CARIAA

    Assessing the impact of soil moisture-temperature coupling on temperature extremes over the Indian region

    Full text link
    While previous model sensitivity studies have mainly focused on discerning the soil moisture-precipitation feedback processes over the Indian region, the present study investigates the impact of soil moisture-temperature (SM-T) coupling on the temperature extremes (ExT) using the high-resolution (~60 km) model simulations. These simulations include the control and soil moisture (SM) sensitivity experiments (DRY-SM and WET-SM) initialized by perturbing (decreasing/increasing) SM from the historical (HIST: 1951-2010) and future 4K warming (FUT: 2051-2100) control runs. The analysis identifies the transitional regions of north-central India (NCI) as the hotspot of strong SM-T coupling. Over NCI, the HIST experiment shows an occurrence of 4-5 extreme events per year, with an average duration of 5-6 days per event and intensity exceeding 46oC. Whereas, FUT estimates indicate relatively severe, long-lasting, and more frequent extreme events. The SM sensitivity experiments reveal the significant influence of SM-T coupling on the ExT over NCI in both historical and future climates. We find that the DRY-SM results in significant enhancement of frequency, duration and intensity of ExT, in contrast to WET-SM. We note that the difference between DRY-SM and WET-SM 50-year return value of the block maxima GEV fit can reach upto 1.25oC and 3oC for historical and future climate, respectively. The enhanced (reduced) extreme temperature conditions in DRY-SM (WET-SM) simulation are caused by the intensification (abridgement) of sensible heat flux by limiting (intensifying) available total energy for evaporative cooling due to faster (slower) dissipation of positive soil moisture anomalies (also called as soil moisture memory). In addition, the influence of SM on ExT over NCI is found to be larger during the post-monsoon season as compared to the pre-monsoon and monsoon seasons.Comment: 60 pages, 13 figure

    The Indian COSMOS Network (ICON): validating L-band remote sensing and modelled soil moisture data products

    Get PDF
    Availability of global satellite based Soil Moisture (SM) data has promoted the emergence of many applications in climate studies, agricultural water resource management and hydrology. In this context, validation of the global data set is of substance. Remote sensing measurements which are representative of an area covering 100 m2 to tens of km2 rarely match with in situ SM measurements at point scale due to scale difference. In this paper we present the new Indian Cosmic Ray Network (ICON) and compare it’s data with remotely sensed SM at different depths. ICON is the first network in India of the kind. It is operational since 2016 and consist of seven sites equipped with the COSMOS instrument. This instrument is based on the Cosmic Ray Neutron Probe (CRNP) technique which uses non-invasive neutron counts as a measure of soil moisture. It provides in situ measurements over an area with a radius of 150–250 m. This intermediate scale soil moisture is of interest for the validation of satellite SM. We compare the COSMOS derived soil moisture to surface soil moisture (SSM) and root zone soil moisture (RZSM) derived from SMOS, SMAP and GLDAS_Noah. The comparison with surface soil moisture products yield that the SMAP_L4_SSM showed best performance over all the sites with correlation (R) values ranging from 0.76 to 0.90. RZSM on the other hand from all products showed lesser performances. RZSM for GLDAS and SMAP_L4 products show that the results are better for the top layer R = 0.75 to 0.89 and 0.75 to 0.90 respectively than the deeper layers R = 0.26 to 0.92 and 0.6 to 0.8 respectively in all sites in India. The ICON network will be a useful tool for the calibration and validation activities for future SM missions like the NASA-ISRO Synthetic Aperture Radar (NISAR)

    Cosmic-ray soil water monitoring: the development, status & potential of the COSMOS-India network

    Get PDF
    Soil moisture (SM) plays a central role in the hydrological cycle and surface energy balance and represents an important control on a range of land surface processes. Knowledge of the spatial and temporal dynamics of SM is important for applications ranging from numerical weather and climate predictions, the calibration and validation of remotely sensed data products, as well as water resources, flood and drought forecasting, agronomy and predictions of greenhouse gas fluxes. Since 2015, the Centre for Ecology and Ecology has been working in partnership with several Indian Research Institutes to develop COSMOS-India, a new network of SM monitoring stations that employ cosmic-ray soil moisture sensors (CRS) to deliver high temporal frequency, near-real time observations of SM at field scale. CRS provide continuous observations of near-surface (top 0.1 to 0.2 m) soil volumetric water content (VWC; m3 m-3) that are representative of a large footprint area (approximately 200 m in radius). To date, seven COSMOS-India sites have been installed and are operational at a range of locations that are characterised by differences in climate, soil type and land management. In this presentation, the development, current status and future potential of the COSMOS-India network will be discussed. Key results from the COSMOS-India network will be presented and analysed

    The Indian summer monsoon drought of 2002 and its linkage with tropical convective activity over northwest Pacific

    No full text
    The Indian subcontinent witnessed a severe monsoon drought in 2002, which largely resulted from a major rainfall deficiency in the month of July. While moderate El Nino conditions prevailed during this period, the atmospheric convective activity was anomalously enhanced over northwest and north-central Pacific in the 10–20°N latitude belt; and heavy rainfall occurred over this region in association with a series of northward moving tropical cyclones. Similar out-of-phase rainfall variations over the Indian region and the northwest (NW) Pacific have been observed during other instances of El Nino/Southern Oscillation (ENSO). The dynamical linkage corresponding to this out-of-phase rainfall variability is explored in this study by conducting a set of numerical experiments using an atmospheric general circulation model. The results from the model simulations lend credence to the role of the tropical Pacific sea surface temperature anomalies in forcing the out-of-phase precipitation variability over the NW Pacific and the Indian monsoon region. It is seen that the ENSO induced circulation response reveals an anomalous pattern comprising of alternating highs and lows which extend meridionally from the equatorial region into the sub-tropic and mid-latitude regions of west-central Pacific. This meridional pattern is associated with an anomalous cyclonic circulation over NW Pacific, which is found to favor enhanced tropical cyclonic activity and intensified convection over the region. In turn, the intensified convection over NW Pacific induces subsidence and rainfall deficiency over the Indian landmass through anomalous east-west circulation in the 10–20°N latitude belt. Based on the present findings, it is suggested that the convective activity over NW Pacific is an important component in mediating the ENSO-monsoon teleconnection dynamics

    Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models

    No full text
    International audienceThe evolution of the Asian summer monsoon (ASM) in a global warming environment is a serious scientific and socio-economic concern since many recent studies have demonstrated the weakening nature of large-scale tropical circulation under anthropogenic forcing. But, how such processes affect the ASM circulation and rainfall is still a matter of debate. This study examines the climate model projections from a selected set of Coupled Model Inter comparison Project 5 (CMIP5) models to provide a unified perspective on the future ASM response. The results indicate a robust reduction in the large-scale meridional gradient of temperature (MGT) at upper levels (200 hPa) over the ASM region, associated with enhanced ascendance and deep tropospheric heating over the equatorial Pacific in the future climate. The differential heating in the upper troposphere, with concomitant increase (decrease) in atmospheric stability (MGT), weakens the ASM circulation, promotes a northward shift of the monsoon circulation and a widening of the local Hadley cell in the eastern Indian sector. An examination of the water vapour budget indicates the competing effects of the thermodynamic (moisture convergence) and dynamics processes (monsoon circulation) on future ASM rainfall changes. The former component wins out over the later one and leads to the intensification of Indian monsoon rainfall in the CMIP5 projections. However, the diagnostics further show a considerable offset due to the dynamic component

    EO For Teens Bisnisnya Anak Sekolahan

    No full text
    corecore